3.2 CE0320 – Strength of Materials

(1) **GENERAL**

SCHOOL	ENGINEERING SCHOOL			
ACADEMIC UNIT	CIVIL ENGINEERING DEPARTMENT			
LEVEL OF STUDIES	UNDERGRADUATE			
COURSE CODE	CE0320	E0320 SEMESTER 3		
COURSE TITLE	Strength of Materials			
INDEPENDENT TEAC if credits are awarded for separate com laboratory exercises, etc. If the credits are give the weekly teaching ho	nponents of the course, e.g. lectures, e awarded for the whole of the course,		WEEKLY TEACHING HOURS	CREDITS
			4	6
Add rows if necessary. The organisation of teaching and the teaching methods used are described in detail at (d).				
COURSE TYPE general background, special background, specialised general knowledge, skills development	Special Backgr	ound Course		
PREREQUISITE COURSES:				
LANGUAGE OF INSTRUCTION and EXAMINATIONS:	Greek			
IS THE COURSE OFFERED TO ERASMUS STUDENTS				
COURSE WEBSITE (URL)	https://eclass.uniwa.gr/courses/CIV247/			

(2) LEARNING OUTCOMES

Learning outcomes

The course learning outcomes, specific knowledge, skills and competences of an appropriate level, which the students will acquire with the successful completion of the course are described.

Consult Appendix A

- Description of the level of learning outcomes for each qualifications cycle, according to the Qualifications Framework of the European Higher Education Area
- Descriptors for Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Appendix B
- Guidelines for writing Learning Outcomes

The aim of the course is to give the students fundamental knowledge on the concepts of Mechanics of Materials.

Upon completion of the course, students will have:

- 1. Knowledge and understanding of bending in beams, both uniaxial and biaxial, with or without axial load.
- 2. Understanding of how skew loads or eccentric axial loads lead to biaxial bending.
- 3. Understanding of how the deflection of beams is evaluated.
- 4. Knowledge of the behavior of cylindrical beams under torsion.
- 5. Adequate comprehension skills of the concept of buckling in beams.
- 6. Knowledge of the concept of shear in beams.

Specifically, students will be able to:

1. Analyze symmetric and asymmetric cross sections in biaxial bending with axial load.

- 2. Understand skew loads and eccentric axial loads.
- 3. Evaluate the cross sectional data of built-up and possibly asymmetric cross sections.
- 4. Evaluate the deflection of a beam due to bending.
- 5. Evaluate the core and the ineffective area of a cross section.
- 6. Understand the concept of buckling in beams.
- 7. Solve simple problems of torsion of cylindrical beams.
- 8. Understand the concept of shear in beams.
- 9. Manage time in an appropriate manner.

General Competences

Taking into consideration the general competences that the degree-holder must acquire (as these appear in the Diploma Supplement and appear below), at which of the following does the course aim?;.

Search for, analysis and synthesis of data and information,	Project planning and management
with the use of the necessary technology	Respect for difference and multiculturalism
Adapting to new situations	Respect for the natural environment
Decision-making	Showing social, professional and ethical responsibility and
Working independently	sensitivity to gender issues
Team work	Criticism and self-criticism
Working in an international environment	Production of free, creative and inductive thinking
Working in an interdisciplinary environment	
Production of new research ideas	Others

Specifically, students will be able to perform:

- Search, analysis and synthesis of data and information, using the necessary technologies.
- Decision Making.
- Autonomous work

(3) SYLLABUS

- 1. Biaxial bending with axial load in doubly symmetric beams.
- 2. Doubly symmetric beams with skew loads.
- 3. Eccentric axial loading.
- 4. Evaluation of cross sectional data in built-up asymmetric cross sections.
- 5. Biaxial bending of asymmetric cross sections.
- 6. Deflection of beams due to bending.
- 7. Core of a cross section.
- 8. Ineffective area of a cross section.
- 9. Buckling of beams. Evaluation of critical load.
- 10. Torsion of cylindrical beams.
- 11. Shear.

(4) TEACHING and LEARNING METHODS - EVALUATION

DELIVERY Face-to-face, Distance learning, etc.	Face-to-face			
USE OF INFORMATION AND COMMUNICATIONS TECHNOLOGY Use of ICT in teaching, laboratory education, communication with students	Teaching using ICT, Communication and Electronic Submission.			
TEACHING METHODS				
The manner and methods of teaching are described in detail.	Activity	Semester workload		
Lectures, seminars, laboratory practice, fieldwork,	Lectures	52		
study and analysis of bibliography, tutorials, placements, clinical practice, art workshop, interactive teaching, educational visits, project, essay writing, artistic creativity, etc.	Classwork	28		
	Preparation for Project	70		
	Personal Study			

The student's study hours for each learning activity are given as well as the hours of non- directed study according to the principles of the ECTS		Course total	150
STUDENT PERFORMANCE EVALUATION Description of the evaluation procedure	Lar	guage of evaluation: Greek	
Language of evaluation, methods of evaluation, summative or conclusive, multiple choice questionnaires, short-answer questions, open- ended questions, problem solving, written work, essay/report, oral examination, public presentation, laboratory work, clinical examination of patient, art interpretation, other	Fin	al written examination: 100%	
Specifically-defined evaluation criteria are given, and if and where they are accessible to students.			

(5) ATTACHED BIBLIOGRAPHY

Greek Bibliography:

- 1. Vouthounis P. (2019) Strength of Materials Mechanics of deformable solids, 4th edition, Vouthouni A. publications (in Greek).
- Papamichos E., Charalampakis N. (2017) Strength of materials and structural components, 2nd edition, Tziolas publications (in Greek).

Foreign Bibliography:

1. Beer F., Johnston E.R. Jr, DeWolf J., Mazurek D. (2014), Mechanics of materials, 7th edition, McGraw Hill.